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1. Introduction. 1In this paper we describe a systematic approach to the

dimensional reduction of nonlinear, monotone boundary value problems. Our
work is motivated by problems arising from considering "thin" mechanical
structures such as beams, arches, plates and shells, cf. [2] and [26]. Let
Qt = JOo; 1[x] - e; e[ be a domain in . We present an efficient procedure
to produce approximate solutions to the above boundary value problems defined
over @F . Led by intuition, we expect that the solution can be approximated
well by linear combinations

N

jEO cj(x1)wj(x2/e) iX, f0;11, X5 [-e,e].

We select the basis- or "Ansatz" functions {*j}jso 80 as to obtain
maximal order of convergence as € tends to zero. {wj}§=0 are found as

solutions to Galerkin systems of ordinary differential equations. We consider
three asymptotic ranges of loads (infinite, finite, and zero limit) and the
selection of "Ansatz" functions is shown to be independent thereof. This is
of course of major importance for practical computations. Estimates for the
order of convergence as N tends to infinity are established (as they must
be, since ¢ is never infinitesimally small in practical applications and

since a required accuracy is often not obtainable by taking more terms in the

asymptotic expansion). The span of {¢3}§=0 is shown to be optimal in the

sense of N-widths in approximation theory. ,,i7¢L_.
4

This method differs from another method of dimensional reduction widely R

used in structural mechanics, that of asymptotic expansion in € , see S e

Friedrichs [8], Friedrichs and Dressler [9], Reiss and Locke [28],

$¢* Gol'denweizer [11], and Ciarlet and Destuynder [6]. The latter method is
"Ql
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limited in its practical scope since it deals with rough input data by
introducing boundary - and/or interior layer expansions which often are diffi-
cult to obtain without extensive analysis dependent upon the particular case

at hand. This limits the generality of the latter approach. We propose to

deal with such nonsmoothness by increasing N near the layer.
The aforementioned characteristics of our approach are practically
GO0 feasible as witnessed through our computational experience in the last section
of the paper.
ié" We remark that this work was inspired by the papers of Vogelius and
3@%¢ Babuska [30, 31, 32] on dimensional reduction for linear, elliptic boundary

value problems.
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2. Notation and model problem.

Let A be an operator of the form
2
(1) au(v) = [ F(Jou|¥)pusDv dx,
Q

where x = (x,,X,) € Q% = 10,1[x])-e,el . Denote by ri = [0,1] x {+¢}

and [0,1] x {-e} respectively, and by rg = ({0} xJ-e,eD U ({1}x1-¢,el) ,
so that aa% = riurfurg disjointly. Let Du = (3u/dx,, du/dx,) and
ul = (P Cauaxph k.

i=1
Let for some n ¢ Z,,

(2) F(t) = 1+t" , wt€r {o},

for the sake of explicitness. What is to follow could be extended to other
choices of F without much imaginative effort, cf. [27].

We consider the minimization problem: Find u® such that

€ 1,2n+2 € € R

(3) u- €w (o) (@°) and E (u~-) = inf 1,202 E(v) ,

VewW

(0)
where
WHE2 gfy L w2005 A v :v] - o} , and
(0) r€
0

E(v) = B(u) - G(v),

*
where the Fréchet derivative of B at u is Au, and where G € (w‘(g?‘z)

1,2n+2

(0) , 1s defined for all u € R and all 1

- the dual space of W

8 €1°"*2(0,1) through

6w = [l 8t e Pvix ,e) ¢ vixg,-e)] ax,

L ’A 5 ) LA .‘ O ) 2 A - \ « " e ~4 . —— - .
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; Here, u 1is introduced in order to investigate three asymptotic ranges of
‘s
"loads" on Fi . According to whether u > 0, w =0, or u <0 , we have an
Lﬁ infinite, finite, or zero "load" (e1 can be viewed as a scaling constant; it
x X
~§f is the Jacobian of the transformation (x1,x2) + (c,n)s(x1,zg) ).
The minimization problem (3) is formally equivalent to the homogeneous
I
;2 Neumann/Dirichlet boundary value problem
iy
i €2 € €
-D+(F(|Du"|")) Du- =0 in @ ,
W
?S () uw® = 0 on rf,
:te‘ 0
R -
w F(|ou®|?) au®/av = ge' ™M on 1t
I
o where v is the outward normal, and furthermore, (3) is equivalent to finding
g3
:3: u® € w1zg?+2 (2%) satisfying
.l
" (5) vv €ulr2M2 08 afv) = v,
'.zl (0)
:‘7' [
()
W Because E is strictly convex and lim E(v) = », (3) and (5) have a
;':. 'VI-)-P&
v . . € 1,2n+2 , ¢ v, L
unique solution u W (0) (Q7) , ef. Visik [29], Morrey [25], Glowinski &
I\
:2: Marocco [10], or Ciarlet [7]; we define |v] = ( f f . |Dv|2n+2dx) 1/2n+2
) Q
;ﬁ{ (using Friedrich's inequality).
M
Finally, we scale the problem as follows
X
. e . € € of
:ﬂ (6) u(x,,x,) u (x1.x2/e) ) (x,0x,) €a° .
k)
V' -
. Denote by (g&,n) = (x1,x2/s) , De = (3/93¢E, € 1a/an) , and
"
1)
) Q@ = 10,10x] - 1,1 . (5) becomes: Vv € W1Eg?+2 (2)
L)
"t,
A'n..
:
N
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28 - -~
o J' F(|D u€|2)D u® « D v e d&dn

et (7.a) 2 € £ €

EMOE ¢ -

e e [) BEIIV(E, ) + v(g,~D] e

4

o .

g?h In the remainder of the paper, we shall denote u® by u , and the left hand

v side of (7) by Au(v) and the right hand side by G(v) for any

égq u, v €,w1zg?*2(n) . Thus (7) can be written (find u € W1Eg?*2 (@) such
hE
A that)
a
e
(7.) vy €W @, v - 6.
o
S
) 1,2n+2 - 2n+2 1/2n+2
b§$ Also, W (0) (f) 1is endowed with the norm |v| (IQ|DEV| edgdn)
)
@3: (again with the use of Friedrich's inequality; here |Q| = 2 independent of
;;2' € ). Note that |\7€|Q = Jvi e )
ud @
’?f' The scalar problem (4) is a mathematical model of the physical models of
".
:.?‘ antiplane shear in finite elasticity, see Gurtin & Temam [12], Abeyaratne [1],

and Knowles [16, 17], and the torsion problem, see Kachanov [15] and Langen-

i ol »
X ST LT

bach [20]. We are trying to express a nonlinear constitutive (stress-strain)

Y

5&5 law, so this covers finite elasticity only insofar as there exists some in-
%?: herent scalar quantity in our problem. In [1] e.g., the stored energy func-
%.e' {

a&a tion W 1is assumed to depend only on the first invariant of the left Cauchy-
RO

oy Green strain tensor: 3 + |Du|2, where the inherent scalar is u(xl,xz) the
fhg: x3-displacement of a prismical body along the x3-axis, see [1] sections [2]
ay

(%)

e and [5]. 1In the absence of body forces, the problem is described by

5'.'

I3

AN

ey D(W'(3+:Du|2))Du =0 in Q with boundary conditions.

;gé The most direct interpretation of (U4) is that of the (stationary) heat

()

t.|

%. equation with a nonlinear thermal conductivity (dependent upon the temperature
Q"

WY gradient).

t' ;

W

! XN

b3 ;
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3. The Galerkin approach to dimensional reduction.

In this section we present some known results. We will consider the
Galerkin approach to solve (7) and (2) on a proper subspace Vy which is

characterized by the Ansatz functions {wj}?=0

1,2n+2

(8) 0

(0,1}

<
=
H
f 12

. L
cj(;)wj(n).{cj} W

§=0

More precisely, define uy to be the solution in VN of

ooy

‘-q—
-

et

(9) AuN(v) = G(v) ,V¥v € Vi

-
-
-

where A and G were defined in the last section's closing paragraphs. We
note that the problem (9) is equivalent to the minimization problem (3)
restricted to VN' which had a unique solution (see references mentioned in

connection with (3), same argument).

1,2n+2 1,2n+2
(0) (0)

i) strongly monotone, i.e., 3 x:R+ Y k)} + R, strictly increasing

*
The operator A:W (Q) » (W Q) is

with x(0)=0 and 1i x(t)==, such that (Au-Av)(u-v) 2 x(ju-v])[u-v] ,

Moo
1,2n+2

v u,v €W 0) (9) , and
ii) Lipschitz-continuous for bounded arguments, i.e., V¥V r>0 3 I'(r)

*
such that if |ul,|v] s r , then Jau-Av] < Tr(r) Ju-v] ; cf. Ciarlet [7],

sec. 5.3.
LE% This is proved easily along the lines there which are based upon the work
§§E':§ of Glowinski & Marocco [10] and could be generalized to hold for polynomials
R Fthat satisfy (sF(s?) - tF(t2))/(s-t) >0, ¥ s,t50, s * t, see [14]. It is
éggg- also known (cf. Ciarlet [7] or Glowinski & Marocco [10] that when A satisfies
;f?.:lf 7
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these two properties, then there exists C Independent of VN such that

x(Jumuyl s ¢ inf Ju-v ] .
v eV

In our case, 3 «>0: x: t *atzm1 y V2 0 . This is a nonlinear generaliza-
tion of Cea's lemma.

Since C 1in the last inequality depends on ¢ , we give a proof of the
following.
Theorem 1. For n € N, let A:W1Z§?+2(Q) > (W‘Eg?*z (Q))* be defined as

above. Then there exisf positive constants a , M , C independent of ¢

such that:

(i) (Au-Av)(u-v) 2 |u—v|2n+2

(i1) frumav ) s v P2+ 2™ P v
1-u 1-u

(111) Pl sce® , lsce®

(i) In Ciarlet (7], e.g., it is shown that there exists a :

2
Ux12 1y15)- (xmy) Y,y €RZ, x =y

2n+2 '
| x-y|

which yields (i) immediately. (ii) Also, in Ciarlet [7] is given that

v
there exists M :

LIx =1y 121

2
|x=y | C(lx| +]y])*"

which yields that

!ﬂ' o 8

: OO r NI g
RO “ﬁﬁWNH“VNW$Mm«OthﬂM¢mN W“ﬂ”uﬂﬁ“&#ﬁﬁﬁﬁaﬁhv IR




Qﬁﬁ |Au-Av|* = sup |(Au-av)(w)|
e w|s

ol s sup { [ wM[Du-D_v|(D ul+[p_v])*"[D_w|edE dn
Mt |w|s| € ¢ € €

+ | |pu-p_v| |D_w|ed dnl
Q

t n

ot s sup (M Ju-v] |w] (|u|+|v|)2n + Ju-v] W] 2e nly
e BE

. using Holder 's inequality twice (p; = 2n+2, p{ = 2n+2/2n+1; p, = 2n+1, pé =
e 2n+1/2n) and the fact (x+y)2n g 22n-1 (x2n+y2n) for x, y > 0, see Korovkin

[18] p. 25. Thus (ii) holds. For (iii),
W 2n+2 *
d?? Ju) S Au(u) = G(uw) s |G| fu] »
\
with u replaceable with uy-

¢

1
o o] = suw |/ e Ua(w(e,1) + w(e,-1))dg|
L M) lesl 0

WA 1
5'2" 1 “uT 2n+2
R ) S C € ’
U
: Q: A

since the trace operator maps w1zg?+2 (Q) continuously into L2N*2 (1) with a

!&?

L. S

. 2n+2 ..

) norm containing a factor ¢ ; (iii) follows.

/777

5?4 Combining inequalities (i), (ii), and (iii) in Thm. 1 we finally arrive at the

B following pair of inequalities in (10)

- .
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o c
"v:t 1

~—
T

|u-uN| SCce inf Ju-v

(10)

" _n_ J__
(2n+1)(n+1) inf  |u-v |2n+1

VN € VN

KRK |u—uN| SCe , for nsoO

N

PO where C does not depend on ¢ .

2
5 -
~~
)
=
+
A
rn
<
=
<
=z
=
—
n
=S
+
Z
)
o}
3
h =4
v
o
o I o " o™ N . 7 3

A Proof 9{_(10): To arrive at the e-dependence we present a standard argument:

2n+2
I

d afju-u s (Au—AuN)(u-uN)

N

u . - -
t ( Au AuN)(u vN)

1" Ju-v

1y S |Au-Au il

N
n_
n+1 }

Wy < {M(|u| + |uN|)2n + 2¢ |u—uN| |u-vN| ;

& with  Jul » Juy] sCe n+T , the result follows.

o Due to this reduction in power in Cea's lemma (by 2n+1) it becomes of "
R interest to obtain a quasioptimal bound in w1'2 under further assumptions.

84 This was done by Kosler [19]. We present the argument for our case. The

oy final estimate is (13).

2

2 172
55 (@, let Jv|, = ( fo|p v|“ededn) . Note, that

For v f w}

iall
':’5: y
-

ke (11) (Awq-Aw,) (Wy-wy) 2 , 1,2n+2
v WqmAWg) Wy W, Jw - Vg wp € W 007 ().

2
|
2%

Y 1117
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e
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=
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If we now invoke the Mean Value Theorem we get,

1,2n+2
(0)

1,2n+2

1,
nw "’éw(m

v wT,w2 (S
2 2
| Cawy-aw ) (V)| = | fﬂ Ce(jp w,|) D_w, -F(|D w,|{") D w,ID ve d&dn|
(12) - D(F(|B|2) (D_w.-D_w,) D_vedg dn|
Q e 1 €2 e

2n
s ¢ (Iow, ], *+ ID w0 )7 fwywoly ¥,

where we have bounded the Hessian (of B> 3 ¢ » F(|e|2) o € B°) at some
. : : 2n 2n Co
intermediate point: C(|D€e|m) s C(|D€w1|°+|D€w2|m) . Combining (11) and

(12), we get
Juy-v |2 S (Au, -Av ) (u -v )
N 'NI2 7 N N N N
= (Au—AvN)(uN—vN)
sc(pu], + D v} )2n|u-v o Juy-vyl
g lo € Nl N121°N "NE2
which with the triangle inequality establishes the following estimate
(13) Ju-uyl, s cCIpul,. |D vyl Ju-vyl5 »

for any vy € vy O w''® provided u € w1’%8;2r\w1'" .

We hereby close our remarks about properties of Galerkin solutions and

turn our attention to the selection of the basis- or Ansatz functions.

1
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Ik, Asymptotic expansion (for the selection of basis functions).

Let uy be the Galerkin solution in Vy (given by (8)) of the variational
problem in (9). In the next section, we shall select the basis - or Ansatz
functions {wj} ® such as to establish an optimal order of convergence of
uy to u (boti=gependent upon € ) as € tends to zero. To this end we

employ in the present section the method of asymptotic expansion and formal

matching to "solve" the scaled version of (4). That is, expand u as follows

(14) u(g,n) = z u(i’J)(E’n) ep(ilJ)
i,j=0
for {u(i'j)}i j and p to be determined. These results will then be

applied in the next section in settling said convergence as et tends to
zero. It will turn out that the basis functions to be selected are the ones

(i

predicted (from the form of u 'j)) by the asymptotic expansions. Recall that

formally, (9) and (4) are equivalent by an application of the divergence

theorem.

Lemma 1. The initial exponent and term in the expansion (14) are:

(i) PFPor u<o

u(0,0)

p(0,0) = -u, (g,n) C,(€) satisfying

Co = "B CO(O) = Co(1) =0 ;

(ii) For wu = O:

, u(0.0)

p(0,0) =0 (£,n) = co(g) satisfying

" 't oon+t !
CO + ((Co ) ) = -8B, CO(O) = Co(1) =0 ;

12
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(iii) For u > 0 :

p(0,0) = - EH%T ' u(O’O)(E.n) = CO(E) satisfying
yen¥l ' . .
((Co ) ) =-8, CO(O) Co(1) 0.

Also, the first n-dependent term has exponent 2 + p(0,0) in all three cases

(1) = (iii).

Proof: Let v = u(O,O)Ca (a = p(0,0)). Substitute v for u in the

scaled version of (U):

D, (1 + |D_v|?™) D_v

2n+1
- u(0,0) ea-2 . (u(o,O)) E(2n+1)(a-1)—1

nn n n

0 + higher order terms

with boundary conditions at n=#%*1:

u(0,0) ea-1 . (u(0,0))2n+1 e(2n+1)(a-1)

" " = t8(€)€1-u+ h.o.t.

Distinguishing between whether a<1, a=1, or a>!, one learns in either case

from the differential equation that u(OaO) does not vary with n , and then
from the bounds *y conditions, u(OAO) = 0, such that u(o’o)(i,n) = CO(E) .

To conclude the remainder, let the first n-dependent term be called u(i'j) and
set v = C, e + u(i’J)eb, p(0,0) = a < b = p(i,j) and substitute once more for

u:

(iéj) €a+b R (u(i,J))2€2b+(u(1,j))252b—2)n)

2 2a
| L]
D€(1 + (Co) € + 2Co)u £ n

ra, (1,30 b (1,3) b1
x (Co € u £ € , U n € )

= 0 + h.o.r.
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with the boundary conditions at n = 1

+ |D€v|2n) u(i;j) = + B(E) ez-b-“ + h.o.t.

Distinguishing between whether a < 0, a = 0, or a > 0, one learns after
lengthy calculations (formal matching) in each case that:
if a < 0: then p =-(2n+1)a >0, b =2 + a, and

'.2n+1

(cy ) ) = -8 with C (0) = C (1) = 0;

ifa=0: then u =90, b =2, and

" v.on+l, !
C, * (cc,) )

= -8 with CO(O) = Co(l) =0 ;
if a>0: then u =-a<0, b =2 +a, and

"
Co = -8 With CO(O) = Co(1) =0 .

Now, distinguishing between a < 0, a =0, and a > 0 1in each of the

cases (i), (ii), and (iii), the proof is completed.

/777
Theorem 2. Let u < 0 and B satisfy )
™ 4
8 €c70,1) and Vk €N, 8¢%K) 0y = g{Z) (1) . o :
\

Then- the exponents in (14) of the asymptotic expansion for u are given by
(15) p(i,J) = 21-(23 + 1) w , viJg €N )

the basis functions are polynomials in n of even degree for fixed & , and

are determined by the recursive formulae (17) and (18).

14




Proof: Define [i,j] =21 - 2ju = p(i,§) + u , 1i,] € N; we concatenate

terms in (14) according to the following rule (equivalence relation):

(1,.3)) (i)
w T e TR o 11,0, = ,,0,]

i, =1 if J1 = J2

’uifJ1’J2

If we differentiate through in the scaled version of (4), we get:

' 2 4 o
[2F (T)uE + F(T)]ugg + [ 5 F (T)uEun] ug

¢ n

(16)

2 2 1
+ [ ;F F'(T)un + :5 F(T)] LN

=0,

where T denotes |D€u|2 = u2g + €242 and F 1s defined in (2).
n

Define

(1,,3,)  (i,,3,)
(1,3) _ 17 2'V2
\% £ u £

i u

O(ilj) - z uE(i1 'J‘) un(iz'.jz)
[1,+150d,43,] 8 [1,4]

[12.32] s [1,0]

V(i,J) u(11,31) . (12,32)
[11+12,J1+J2] s [i,5] n ' n

[1,.31] 22, [12,32] 22




With these we express

“aly (u )2 = E-ZuN , where N, = z v (1.:]) E[i'J] ,
) £ 1 1 L3 1

€-2u 620 , where

B 5 ) LS (1] 2 ) i) [1,5]
[i,]]22 [i+1,j]22

4% -
1) 2 . 2ue’4

% (un) = N2, where

L, G T3] ;o (12,9 [1,9]

y
¢ N, = 2
2 [1+2,5024 2

[1,3]24

Y Substituting these in (16), we obtain

(1,3) e[i.J]

N e~ (2 [2n(N, + ezmz)“'1 Ny o+ (N o+ eznz)“] <[] ug ]
3=0

B i,

¢ Lintnyreu)™ o] « [ 3 wllnd) L)
s [1+1,5]22

u(1*1,J) e[i,j]]}

) + [2n(N1*ezNz)n-1N2+€—2(N1+€2N2)n] * [82 nn

v b [i+1pJ]=2

B - v (1,3) _[1,4]
{ « e P {0 3 u € ]
i." i,J=0 EE

; S MR
(i+1,j]22

.‘\, = 0

1
— where we have used Lemma 1. If we multiply by €(2n+ Ju and list terms in "

fw:’ 1 6 N
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:}“ descending order in terms of upper index pair for a given power [i,j], we get

u(i+1,J+n)

( RS I AL ISP D

I (17
" [1,j+nl20 ©&

e (i+1,j=nl22

eli,jl +

ﬁ?f R 1is an abreviation for the first {...} in the previous equation and

)2n u(i+1.J) s[i.J']
nn
€(2n+1)u—1

e contains as leading term (Co' . If we multiply the

" boundary conditions through by , We get

; (i+1,j+n) [1,j]
1A (18) [i+1§j+n]22 ug €

1 [N1 + azNz]n ) un(i+1'j) e[i’j]
’ [i+1,j]22

[4
“a.
+

+8(¢&) €2nu at n=+1.

=
1

A Fix [i,j]. Solving the Neumann problem (17) and (18) for ufi*1»J*n) giyes
! rise to a solvability condition at n = t 1 yielding an ordinary differen-
) tial equation in £ fixing an additive function in u({}»3*M) 1t is in this
B O0.D.E. with its O Dirichlet boundary conditions that the conditions on &8
% become necessary and sufficient. The necessity is most easily seen via an
¢ even extension about § =0 and £ = 1 . Together with Lemma 1 this deter-
M mines u(i'J) uniquely, 1i,j N. The u(i’J) are even polynomials in n for
(i'J)(E.‘)

W fixed £ , in fact induction using (17)-(18) yields that u is of

»
P degree 2N for 2Ns[i,j]<2N+2.
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o
ik We remark that Thm. 2 would hold for L =0 as well if we merely drop

the j-term in p(i,j) and combine the leading term in R and the leading term

K% '2n

0 before C in (17) to (1 + C_ )

uﬁi+1) and similarly in (18). Now for

i u > 0.

. Theorem 3. Let u > 0 and let B satisfy

e 8 €c°0,1) ana VK€ N 80 =8 -0
K ¢
W Then the exponents in (14) of the asymptotic expansion for u are given by :

i (19) p(i,j) =21 + gi:} ., Vi,jéN;

J the basis functions are even polynomials in n for fixed § , and are
determined by the recursive formulae (20) and (21).

Proof: The same as the proof of Thm. 2, except that the leading term in (17)

St .

\‘ [] s 2 "

:s: now is the one from R, (CO )2n u§;+1’3) and the two first terms in (17) 4
)

|/

)

{;: now have indices (i+1,j-n) and (i,j-n) respectively. N
o {

o \

o @

L) ' s ' s . . .

i (i+1,5]22 1,3=0 ;
B .
¢ ¢

é%, . R+ z uﬁ;+1,j~n) e[i,j] + z uéé,J-n) e[l.J] ?

! [1+1,3-n]22 [i,5-n]20 "

‘!’5 i

“l{ ‘|

.?; = 0, ;
A ]

1?1 d

R

o g

- where R is R excluding the two first terms of (14) with p(i,j) given by

e :

bf.;' ,

, A

« .'l ey N - - - - - - - -
N AN bl i oL IR ) NN
LA R A 9564 J‘. e B -.,;3,,.‘,,-3,3’1'., .J"




(19). Similarly, we get for the boundary conditions at n = + 1:

[N1+52N2]n ) u(i+1'j) e[i'j]
[1+1,3§]22 n
(21) - z u(i+1sj—n) E[i'J]

[i+1,j-nJ22 "

= + B(E) .

Again we have to concatenate the series according to an equivalence relation:

(i,,3,) (i,,3,)
1294 292 .

u ~u <=> [11,11] = [12.J2]
1y =1, if 3y=J,

<=> i1 - 12 "

7, -3, = o if 3 =3,

Also here, u(i’j)(ﬁ.') is a polynomial in n of degree 2N for
2N s [1,j1 <28 + 2.
1177
We remark that the above method is quite general. It could for instance
be generalized to a layered material where F might depend alsoon n . 1In

such cases we would no longer get even polynomials in n as Ansatz functions,

but the same type of recursion formulae would determine u(i’J)'s n-dependence

_— and the p(i,j) would remain the same.
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N 5. The selection of basis functions.

We will now apply the results from the last section to the selection of

oM
F‘ the basis- or Ansatz functions {wj};=0 . This selection fixes the sub-
{
o spaces Vy as defined in (8), and we let u and uy be the solutions of (1)
;i',f
and (9) respectively. The aim of this section is to make said selection so as
Hs to have optimal order of convergence of u-uy as € tends to zero at fixed
T.
: N .
"l
Before we state and prove convergence of uy to u for € tending to
W
3 zero in the three asymptotic ranges characterized by the sign of u , we let
)
'k' D, be the operator defined by Dju = (d2u/d£2) mapping Dom(D;) =
o
, w2.2n+2(0’1) f\w1'23+2 0,1) » L2n+2(0'1)
"
2%
I Theorem U4 Let p=0 and n 3 Z, .
k)
‘ vN €N, 3 cy independent of ¢ such that, if 8 € D(D,") then
" ,
) —-_ ——
\Q 2N+2 2n+2 . n
)
:$ Ju-u,] sC, ¢ (2n+1)? (n+1)(2n+1)
o N N
; ) .
N Proof: For convenience, let n = 1. Let
(‘]
i
o N 24
¥, GN = z uJN € J
K 3=0
o
iﬁ
' - 5J JN
. where uJN(E.n) Zi=0 Xy (E)Wi(ﬂ)- Then
"
I N N
3 - 2j 251
! DU, = ( § (u..). €Y, ¥ (u,.)_ ¢« ) .
3 e N gm0 INE Ty I '
t: M
1
ko g
g 3
* -~
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4 1,4

Wy 1,4 1,
*h%% On the grounds of denseness of W 5 (0,1) @ W (-1, 1) in W (0)
LM

1,4
(0)

e where ¢ ¢ W16u(0,1) and d ¢ w"u(-1,1) , for convenience. Then (9)

(Q) and
_ *
the fact that AuN € (W (2)) , We restrict v to be of the form c¢ -+ d.

f&{ﬁ becomes with EN
'y

L5
L
—
—_—

el

—

o

=y

n
N’
o
ar:
o

—~

<

(&%
=

A4
m
N
[ &N
i~
—_
=
m
N
.
|
Nt

x (cd, e_1cd') dgdn
ot (22)
Yo
can = [ 8(8) ca dg

KON
LS
Yy 3 l-‘+

-1
= 2 [ Becdagam ,
0

for any such v which is even in n (we shall let v = u- EN , even in n)

and where

|2 2 ] 6‘2

[}
M
—~
=

f _
] 1 +
: lDeuN

W 21

N
LA < -' B,

LY
...)ko' .l'

¥




4&; Note, if EN was known a priori to be smooth, we could apply the divergence
theorem and get a second order D.E. with B.C. a la (17) and (18) modified by

R the remark following Thm. 2. This justifies the choice of powers of ¢ in b
3,4 -
iy u, .
'It"; N g
The left hand side of (22) has coefficients of ¢ raised to powers up to

W)

el and including 2N-!' ; these coefficients remain unchanged if we increase N .
' -

R To see this, first notice that the coefficient equation for ¢ i in (22)

reads

3 -
[ [q tugy)” car dean = o
n
and yields (ugy) = 0. Next, the coefficient equation for eo reads:
n ;

Ky e 2
R | JQ (1 + Cugy)® M(ug) e'd + (uy,) cd') dedn
' 13 g n

, 1
: = 2d(1) [ Bec dg .

\¢ 0

v

,"ﬁ 2N-1
*- We continue to the coefficient equation for ¢

A [ 10+ uy) Duy o o) e'd + (uy) cd')
g 1 a0 o €5 o,

)

i

g 2- -
400 + (the coeff. to ¢ N-2 in |D u IZ)((u ) e'd + (u,,) cd')dEdn
29 e N ON £ N n

h&v These equations do not change if we increase N . Furthermore, we can solve

ias them exactly; if we integrate by parts we gef the first N equations for the

) 22

™ ;

3
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LY o
9‘ :..!
te!
.
»
M asymptotic expansion (possible if B8 € CZN(O,1) with B(Zk)(o) = B(Zk)(1) =0

for O0gksN) , see Thm. 2 with subsequent remark. However, the coefficient
K )
e equation for € N+1
l:
6
[ (etu ) 2) ((ug) c'd) +
‘ Yoy u) ¢ .
N Q g 3
[}
.
v + (the coeff. to €2N in |D E'IZ)((u ) ¢'d + (u,,) cd')d&dn
> e N ON IN
i g n
K]
2 =0
o
A EN+1
ﬂ up to the coefficient equation for ¢ (highest power present):
\ 3
D [ [ (ug,) 3 c'd dedn = 0

NN

? ¢ -
P — '
Ny will change as we include more basis functions. Define uN (modulo an
. N o3
> additive function of £ ) to be that exact solution ( } Uy € J) of the
t j=0
" - -
) coefficient equations of € 3 ’ e1 y o o ey eZN ! . {ujN}N is thus
o J'_'o

defined iteratively provided 8 € D(D1N_1) , see Thm. 2. Furthermore, if we

suppose 8 € D(D1N) , the coefficient of 52N+1 in Aﬁh(v) can be written
4
: as
'h - 2 1]
s [] 0+ tugy HCuy,y yoy) ed” dedn
N Q (3 n
.'
)

1 - 1

where we write c¢d' as ( l-v )54 e1 % . Thus, Vvé w1'“ (Q):
¢ € N (0)
.
.
)
p (Au - AuN)(v) = G(v) - AuN(v) N
[t .
9| )
' S
" 23 H
' -
! 0

L C O PR IR .
A% ) \ Cnar e S W
O M AUSCICN A

L7
LA XN




]

"o %
e
"y

b ‘P " .

A ""“- S 'ﬂ ‘.P"' '( *'-"-"‘s( "'4" \",f

»

= G(v) - (G(v) + R(EN , V),

6N+1

where (for € bounded; ]RI + ® a8 ¢ for € » o)

—_ 21
|R(uN. v)| s Cy vl g2N+2-4

which together with strong monotonicity implies

a |u—E i

ol s 1 (Au=aup) (u-up) |

— -1
< CN|u-uN| 52N+2 4

With (10) this implies (with a new constant CN)

N —

|u-uN| < CN €

for n=1. Larger n change only the trivial and tiresome algebra.

777/

We immediately obtain the following estimate in w1'2:

Corollary 1 Under the same hypotheses as in Theorem 3 and supposing that u,

E& LIRS Cy independent of & such that
2N+3/2
|u—uN| S Cy o€
2
24
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Theorem 5. Let u €R

Proof: Again, let n=1.

Ry = ([ fo (1 (g )EZ]- (Uyyy yap) cd' dedn
n
+
e e g 3 erd dean
1) 2
Y 1,4
s Cuer|vl, V v=cd € Wigy

inequality (13) for vy

have let v=¢c *d , ¢

Now string

2
2

|u4I

ol s (Au-aup) (u-up)

2N+1

Lo~ = N
S R (uy umup)| e

= U together to obtain the estimate; w.l.o0.g. we
N

W' 2n+2(o 1), d €W .

The next Thm. covers the case u<o .

that if 8 € D(D1N) then

where

"7

LI
Vo b " '1.' G‘I“Q‘ !’ﬂ’ﬁ' AT , " My a‘

(2n+1)2
|u—uN| s CN >
e{(N,u) = 2N+#2-up- 2n+2 , and

25
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.n€z_ . VN €N 3 Cy independent of e such

e

el .
'..‘

2=

‘4
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A
n
) - e ?
Proof: Let ( [1,j] = 2i - 2ju, i,J € N) ),
i - uN(i.j) (30w '
[1,j]<2N+2 :
i,j €N

where u&i'J)(E.n) = Zi x(i’J)

k=0 Xk (6)y, (n) , where (in case wu € Q) we take )

the representative (i,j) for which -ju<! . The remainder of the proof is

then a mere imitation of the procedure shown in the previous proof with the g
'
aid (as also there) of Thm. 2. '
'y
27 '
¥
For uw>0 , we need an extra assumption on B8
-1 2n+2 {
* 4 o]
Let 8 € (W22 o w2 garisry: -
i
The function C0 € w1’28+2 (0,1) defined as the solution of ',
¥
! 2n+1 1,2n+2
[ lep™er +8etag = 0, Ve €w " (0,1 3
0 W
!i
§
. . 1,2n+2 A
(A) satisfies that there exists u W (0) () , solution of
\
2n 1,2n+2 '
L - 1]
[ In CrTu v =glv) , Vvéw (o) (¥ :
%T 1,2n+2 * )
) for any given g € (W' () (@ . !
W f
O S .:
o ]
. Theorem 6 Let u € R, n € Z, . Let B satisfy assumption (A). V N €N,
e :
o 26 .
f":" ]
e ‘
LY b
:t,ql () i
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let. g € D(D?) . Then 3 Cy 1independent of € such that

e(N,u)+d(n, u)

2
_ (2n+1)
Ju-uyl s ¢y e '
where, again
e(N,u) = 2N+2-u - v R and
d(n,u) = 2n(1-u - 1 )
’ 2n+2
Proof: Let (with the [.,.] notation of Thm. 3)

_ _ M
= (1, 3T ms
uy = ) Uy €

[i,j]<2N+2
i,] €N
(1,3) _ i (1,3)
where Uy k=0 X, ¥, » where (for u Q) we take that

representative (i,j) for which 55%7 u <1 . Otherwise the proof is like

that of Thm. 4 with the aid of Thm. 3 and the inequality (10) for w0 .
777/
Assumption (A) is rather restrictive and can be dispensed with through
containing ourselves to local estimates or estimates in weighted norms.
As presented in Corollary 1 for u=0, it is possible also for u=0 to

. , 1,2 1,2n+2
obtain estimates in the w(o) - norm rather than the W (0) - norm.

Corollary 2 Let u<0. Under the same hypotheses as in Thm. 4 and supposing

that u and uy € w"“ » 3 Cy independent of € such that

27




e rerererearreTaEeEre——r———

e(N, u)
|u-uN|2 S Cy ¢ .

where e(N,u) 1is the one defined in Theorem 4 with n=0.

The proof is like that of Corollary 1,

Corollary 3. Let w>0. Under the same hypotheses as in Thm. 5 and supposing
H !

that 2™ u ang 20 uy € W', ¢

N independent of € such that

2
e(NvU) - é%%r
€

Jluru,} s cC
N > N

where e(N,u) 1s the one defined in Theorem 5 for n=0 .

Proof: As in Corollary 1,

ee(N,u)

|u—uN|2 S Cy

but (13) now states

- 2n -
|u-uN|2 s C (fou}, + |DuN|¢) |u-uN|2

2nu

2n+1 -
Ju-u, ] .

N 2

The combination of the two inequalities completes the proof.
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It i3 important to note that we have made the selection of basis or

}N (and thus Vy) by constructing u, out of

Ansatz functions {wi N

i=0

{uN(i'J)}[i.szme , where U,f,i"j) 6,n) = L1 xél'J) (8) ¥ (n) are

determined through solving equations which are the weak variants of the formal
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matching equations already encountered in Section 4,

We observe that for our model problem (the particular form of F given
in (2)), we obtain the same selection of {wi}¥=1 (namely the even poly-
nomials) in 1ll three asymptotic ranges (u=0 méaning finite limit load,
u<0 : zero limit load, and u>0 : Infinite limit load). This would hold
for more general F (see the paragraph following (9)) including such that
have a factor depending upon n (e.g., layered materials); here the selection
of {wi}T,O would be made according to the same scheme, only, the sequence of
second order differential equations determining wi would have coefficients
depending upon n and {wi}Tso would no longer merely be polynomials.

In the next section we intend to show that this choice is optimal with
respect to wiai - norm convergence under appropriate boundedness conditions

[ ]
on Deu ’ DeuN in L .

29
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6. The optimality of above selection of basis functions (at fixed N).

¢ w1,2n+2

N
Define for [¢1}i=0 (-1,1) ,

N
1,2n+2
Wy = { I e.o. : e, W', (o,N} ,

and let {wi}§=0 be the basis functions selected in the previous secfion

(defining VN). There we established the following convergence rate in

w‘zg) -norm for € tending to zero:

|u-uN|2 s Cy ¥(e)

under certain assumptions (see Corollaries 1,2, and 3), where

2N+% - y for uso
€
¥(e) =
3., - 2n
2N+§ Snel w , for wo .

Regarding the question of optimality of the selection of {wi}N we now
0
state and prove
Theorem 7. Let u $ O. Under the hypotheses of Corollaries ' and 2, suppose

}N exists such that (for all N € N)
i=0

(o,

inf  Ju-w

Wy € Wy

| s oe)
N%2

for some function ¢ with the property that

— 8e) |3 pounded for all ¢ >0 .
u! ¥(e)

? .

3, 3 \

i 50

n!:‘

v

u .
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Then Wy 2 Vy .
Proof: The proof is by induction on N. Take the particular function

i ; - Z u(itj)etivj]-u
F (i,J]s2N

N related to u, of Thm. 4 and 5. 2w fw
such that

N N N N

In particular, let N = 0:

: o (0,0) = _ = 3 -
Vo - Wol, = u7g” e -wyl. = o(e ) .
2 2
We thus get
3

! W% -Gy el - oced
N 2
)
¥
) -

such that (if we denote w(oéo) = Wy eV
[ efu(0:0) - (0,0 2 (0,00 _ (0,00 2 . 3

elu”] WA ax s JutTT - TR s Co €™ -

Q

w(0,0) = u(0,0) and u. = w € W

j whence 0 0 0 0 0 °

Suppose next that {wi}N-1 < span {¢1}N » then there exists
i=0 i=0

N
E>

N Such that ({.,.] is defined in Thm. 2)

! N
X
L)
' - -
. v, = w.l
N N 5
L]
‘ - I 2 uN(i’J) e[i,J]‘u - ;N|
" [1,j]s2N 2
i}
3.
1 = O(EZN * 2 u) ’
z 3
o
; | 3

¢ G P Ao A O SR IA N L 7 P ¥ 3 ) S bt
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where uﬁi’J) = ) . x(i'j)w as before. This means that NG

k=0 k K §

-
]

T .~

z u(ilJ) EEI’J] i W I
[i,jiseN Y N,

RN

R A

bl

(0, 2N, LI S W) 031 )
& k=0 (1,52cen ¥ N

3

T s
-,

2N- u+3

= 0 (e 2) ,

such that upon taking the limit € + 0, wN span {¢i}?=0 . This completes fﬂ
the proof.

1110 a4

We note that it is possible to ‘trengthen this Thm, to allow ¢ for aol

which .

S(e) e? < o) , as ¢ + 0 for any p € [0,2], VA

by employing

25 on-uedp !
JI | a (v —wN)I ) s |vN-wN|2 = ole ) . i

This means that even if we were satisfied with a convergence rate of 'ﬁz
e

2N+% -u-p,p € [0,2]), we would still need to use {wi}N . We shall
i=0

~
employ this technique in the next theorem. E:
-~

32 N

e SR TR T I N -
( .'a- \. “ ‘\.\"\..’ " __\‘.,,_’\

L ¥ vl e’ Ca? - ar
V".) \_.'s. P T ;

A X g < « “ ..
AOON - 1‘ T .
".\.'.l‘,"- "’, » l" A pt o 10 a8, " 'f" by .* 3 \ 4'\ '




U T T TT W T A YW EwW

]
,*:
;
K
1
; Theorem 8. Let u > 0. Under the hypotheses of Corollary 3, suppose
{)
‘ [¢i}N exists such that (for all N € N)
W i=0
W,
'f
o
" inf fu - wyl s eCe)
) wy € wN 2
i‘ for some function ¢ with the property that
)
)
]
" pralil |
o(e) 2n+1 " Un+1
. Vo) °© = o(1) , as e v+ 0, for some p + ervell € [0,2] . —
R 23
. X
'i ,l'u
i“ Then wN VN . ’:!",
4n+ - 3
. Proof: For p + 5net P T [0,5 1, the proof would merely copy that of the
W [i,5] - - %
) . - L(1,3) »J 2n+1 b
: previous Thm. with vN = EEI,J]SZN N € and o
:‘ 2ju )
P [i,j] = 21 + Se] . A
" _ i,
5 As is, let N = 0: k@
B
X u - - 2n u - + i l.::
. I; - I - l (0,0) 2n+1 _ ” I - g (E: 2n+1 P 2 ) .0.:
o “of, 0 o '
" _ 4n+1 _ i Ty
K ( 2nel W TP 2) R
" = ’ ?‘
o
; ,5v
. and
! 7\
W oo 2 4 n+l L, 3., e
o A ) (0,0) 2n+1 - 2n+1 2 H
» 2 o 1 - = '
¥ e II lan (uo € wo)| ) ale ) "
B o
4 » 1
> MY
3 ( 0 y O ) = ' ;;'i
a Since 57 Yo = 0, letting € + 0, % 0, and y, € span {¢0} . X
»
X With this modification, the induction step will carry over from Thm. 7. Y
8
ﬂ‘ ‘:&"
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1Pt

‘I
i
This ensures optimality for n=0 and otherwise u < 2(2n+1)/(4n+1) . &
'I
We emphasize that for u > 0 we used an L” - bound on the gradients of §
_ _H - _H \
2n+1 2n+ o ht
u and € uN , Which implies that we have an ¢ -dependent )
b
. \
constant C(|ou]_, Jov]) in (13). h
In Thms. 4-6 we established convergence rates for ¢ tending to zero ;f
with N fixed. Even though we are dealing with "thin" structures, ¢ ;V
.i
nevertheless has some finite value over which we may have no control. Even Y
if ¢ is "very small" we have seen that convergence rates are limited by the §
o
degree of smoothnesss of the load 8 . It is therefore of interest and im- X
portance to prove convergence for the number of reduced models (N) increas- K3
ing.
3
|’\
y
U
{
N
k u
A
g
L
N
i
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7. Optimal convergence for increasing number of reduced models.

Let €>0 be fixed. Let wuy be the Galerkin solution in VN (given in
(8)) of (9) as before. Proving convergence of u-uy for N tending towards
infinity reduces to an approximation theoretical problem because of (10). For
completeness we outline it here, cf. [31], Babugka, Szabo, and Katz [3], and

2—theor‘y and Meinardus [23] and Jackson [13]

Canuto and Quarteroni [5] for L
for L®-theory. We then interpolate in order to obtain L2n+2—estimates.

Details are found in [14].

The solution u is an even function in n so we define for any p : W
!
9
[2, =] , m € Z,: b
AT
O
~ m,p _—
W (=1,1) = W P-1,1) {viv even} . A
o
A(1,m)p A1 rp . Amvp “m!p :?‘.)
Let W, W oNn [ve Wy €wn } , 2spse= , m €z, , where o
~ Mm,p —
v f wn if v and its first m partials w.r.t.n belong to LP in the v
¢5§
usual generalized sense. Define 2:
h
O
m+1 m m m A
|V|.(1.m)p = |v] 1ot |37 vsagan'| o +|3"v/an| - =3
W W L L K4
(E.ﬂ) : 3
ah
Let Py be the space of functions which are polynomials in n of degree at s
most N and Py be those functions in Py which are even in n . Qf
s
Using fairly standard argument along the lines of the references cited ﬂ%}
Tt
above, one obtains:
. o
Theorem 9. For all NE& N, m é Z, , there exists an operator AR
S
P
~(1,m)2 Ao Al ~1,2
-/\. H -— E e
oN W (E,m0 »> PZN W () W () o
0.'.
s!ﬁ
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‘;!\. -~ o e Lt h okl ath sk A B &g 4 L ok ek Ak Asd igh Shk i Alotah S he-ShaAce J t,
t!? !S
% o
“:; ~
S 03
s y
v
:v: which is a continuous linear mapping: -
? A
Al
is J,m2 a1,2 "
i. /L é-x ] ’ :\4
i I 2N (W(E’n) ’ W (Q)) ’ and ;:,.
1S ;.
2 o
‘ A e Glmm e e
. -4y Weg oy » W @), =,
B &
A$ -\‘
[} .
::: with norms bounded by a constant times (emy1™m | X
3l -
. We then obtain the main result of this section. -
! '
¥
8 :
(1 )2n+2 l:a
" Theorem 10. Let u w(g’rr"\) N (@) foran m€ Z,, n €2Z, . Then there :::
1 4 i
. exists a positive C independent of u and N such that for N € Z, -
o] : ”~
L., 1
o 1-my ¢(1,m) ¢
3 inf  Ju-v]a. s ceeny Tl . s
'~ v € VN W 1,2n+2 2n+2 M
L l..
' Proof. Employ interpolation by the K-method, see Bergh & Lofstrom [4] Thm. :::
: 6.45 (5), we obtain from Thm. 9 (choose & = 1/(n+1)) %
"N éK’ ~(1,m)2n+2 ~1,2n+2 o
: -\
D (I ZN) (W(E,n) y W () ::
2 53
i ‘
. with a bound on the norm proportional to (2N)'™ . ~
(.:: "
b 1117 :
M ),
n This yields the immediate :'.
fa o,
- Corollary 4. Let pu € R, né€ z, . YN€zZ,, 3 C>0 independent of N
i T
& ~(1,m)2n+2 -
N such that, if u€ W (2) 7
:‘. ’ ’ (g,n) ’ s
A e
& 1-m ¢
2n+1
x |u—u2N| sc (2N) ) d
0o “
i N
¢ 36 ~
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u being the exact Galerkin solution of (7).

Proof: Combine (10) with Theorem 10. -
/777
2 . P

The similar Corollary about w" -rates out of Thm. 9 is

Corollary 5. Let u €R,n€2Z . vN€2Z, , 3 C>0 independent of Ry

A(1,m)2 "ﬁ:

N such that, if u € W(g " Q)N W’ bounded in W'*® uniformly, oy
]

! {uZN} "
m DY

u-u < C(2N)1_ . .
' ng N,

Proof: Combine (13) with Theorem 9. " m1
117 - iR

We will be in the position to show that the subspace VN gives quasi- o
optimal rates of convergence in w1’2 (in the sense of n-widths) after the
following definitions (i.e., in general one could only improve the constant et
nof. the rate):
The (Kolmogorov) N-width of W (a subset of w2y in W) s given ¥

by z
o

o

1,2 _ . s : 2

dy (W *%) = inf {E(W; W)W, is an N-dimensional subspace of W b, P

where

E(W; W) = sup inf  |x-y| B
A
x EW y € Wy
is the deviation of W from Wy . g

A subspace Wy of W of dimension at most N for which

1,2, _ _
dy(Ws W% = E(W; W)
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is called an optimal supspace for dy(W, w'*2). The notation follows that of
the monograph by Pinkus [27] .

Let W = W™20*2(.11) . In said monograph [27], the N-width is com-
puted in Chapter VII. Set B = [v € w:|v|s1} , then there exist positive

constants C and D independent of N for which
D(2N) ™" s dy (B 1> s cem™
This yields immediately

p2n) ' ™™ g a, (8, Wi2-1,1)) scen'™

In view of the denseness of w1’28+2(0,1) ® w1'2n+2(-1,1) in w1'2“52(9) ,

this shows that the estimate in Corollary 5 is optimal (modulo the constant C)

and that this is obtained by the subspace VN . Thus {wi}N (or any
i=0
{¢i}N with the same span) provides a quasioptimal choice with regard to
i=0
convergence at fixed ¢ for the number of reduced models (N) increasing.
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tte 8. Computational results

Consider the numerical problem of finding the dimensionally reduced solu-

:3 tion of (7) within Vy. Let n=1 in (2) as an example. We will consider two tf
el d
:. loads B8 : B=1 and B(x) = An2(1+3xzcosznx)sinwx. We limit ourselves in X
L) M
advance to N = 0, 1, and 2. -
ag 2 Yy . B
55 Select ¢O=1, $,=N and ¢,=n . These form the same span as the first :
N "
55 three ., as could be found from Thms. 1 and 2. Let #3
i ’ i
N -
% H
iﬁ: with Vaj é:w16u(0,1) . Substituting this expression into (7) yields a system g;
. ) \_I
* of N nonlinear, second order ordinary differential equations in § , upon
A : 5
:x: integration w.r.t.n over [-1,1], to be solved for {v2j}?—o . We convert :
1§ =
Ny
‘3 this into a first order system. Let Wiep T Va5 o and WieNe2 T Véj for ‘i
9 A
0<jsN . We arrive at
25 EE
:-‘ A(i)!' = R(w; B) ) \'
K - ]
; , :,
i ?
+9 where w = (w(j))?f;z , A€ RZN+2X2N+2 , and R € reN*2 | Upon inversion ‘
Y ;
Oy of A, the system is in a state such that it is numerically solvable using A
'
(" :
]
:‘ the nonlinear ODE-system's solver written by V. Majer, cf. Babuska and Majer i
\!' .‘
_ (21], and Majer [22].
[ Y
;“j From that point on we have taken mainly two approaches. The first to be ;
L)
)
b mentioned is applicable in general for nonsmooth or noncompatible boundary

loads B as well as for all three asymptotic ranges (u<0, u=0, and uw>0 ).

- -
W \ . . . b
4\ The second is applicable only for smooth, compatible B8 and for usO , in r
VO . .
K which cases an asymptotic expansion can be generated automatically. e
y, ¢’
¥ -
T‘ ~
B )
» ;
,q &
9 39 e
'."M ht
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e At
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h& We now describe the performance of the first approach. Let B8s! (non-

compatible) as an example.

éﬁb The exact energy (and solution) being unavailable, it is rather found by

o
s
P o~

o

extrapolation from the energies E(uy), E(u;), and E(u,).

o
-

» -
T

It is intuitively obvious that in the range |Dsu|<<1. E(uN)-E(u) can be

interpreted as the square of the difference in the H’-norm. Also, there is
1,4

-

some relation to the difference in the W -norm. Define

P

o:R° 3 p > o(p) = (1+%|p|2)|p|2 . Then

"l ete
X
ool

¥ S

BT

:
1
E(u)-E(w) = E-IIQ jo d,@(D_u*s (D, (uy=u))) +D (uy-u)dsdgdn = Gluy-u)

S and since

. 1
0~ 5 | fg € 4 0(Du)*D (uy-u) = Gluy-u) = O

(u is the minimizer) we get

Al P

-
o
3
‘= A

E(uN)-E(u) = %- foeDe(uN—u)g DE(uN-u) ,

=

where

r?}.‘ﬁk}fﬁ
%

%

1 s
= f I d2 ®(D u + tD (u.-u)) dt ds with
00 P € € N

el -

2 2 ;
(dp¢)iJ = GiJ(1 + |p|") + 2p;p; . Thys we can estimate with

{\ i = 7:m
iy M2 5 >0

-
> -

>
- 1 2 .1 4
kﬁ E(uy) -E(u) 2 4 e / fn 5 |D (uy-w)|® + 7 [0 (uy-w |, and

o 1 2
B E(uy) - E(w $ e [ In 5 | D (uyu)|

P P S

gy + 3, {|D€u|2|D€(uN-u)|2 + |DE(uN-u)Iu} .

4o
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1)
N
Y If we furthermore assume that uy,u € we with |D u | |D€u| <M for
X *®
all N for some positive constant M , then said relationships between the
R
qho difference in energies and the norms of the energies emerge:
)
ol
‘,z*i; >
AN
E(uN) ~ E(u) ~ |uN-u| :
““t H
el
N 4 1 201 % 2
’. - - - -
::;3; Mlug-ul™ s EQuy) - B s C g+ 150,00 o Zlug-u]® .
‘e".
ot
v The latter assumption is dubious however in the limit € + 0 for u > 0 (see
S
Y
ygi Lemma 1). With said assumption, Kosler [19] proved the usual Cea's Lemma type
R
AN - i -
KN estimate |u uNl ; S Cy inf € v Ju VNI ; - See (13). For uso0 ,
H N N H
;h: we thus expect "linear'" behavior (as well as for u =0, if M <<1). See
o
kﬁ Corollaries 1 and 2.
sl
i ‘
* The expected rates of convergence (for ¢ + 0) measured w.r.t.
0
&h difference in energy are (cf. Vogelius & Babuska [30] for wu=1, linear case)
i
\
iy
I’,&
KA
L *
Linear Nonlinear
N
q‘ (N=0,1,2) (N=0,1,2)
'.lg'i
b
!‘:.'f.
W 1
e {4 ]
‘»}\ u= 0 (3;“9“) (%r %9 %)
NS
4
0 = 1 LN
_ u 1 ( ,2o2) (9' 3! 3)
%
i:: where the * indicates that they are based upon w1’u-estimates. If we used
)
%L the w1'2-estimates. we would get the rates for the linear case except that
wY for =1, we get [ - % -g- %) instead.
’ 41
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u € E(uo)-E(u) E(uy)-E(u) E(uz)-E(u)
.1 6.35 e-8 2.93 e-10 1.35 e-12
-1 .01 6.64 e-13 2.80 e-16 1.18 e-19
.001 6.66 e-18 0 0
.0001 T7.00 e-23 0 0
.1 6.31 e-6 2.92 e-8 1.34 e-10
0 107372 2.07 e-T 2.92 e-10 4.12 e-13
.01 6.62 e-9 3.90 e-12 2.29 e-15
107572 2.10 e-10 0 0
1. 5.90 e-9 6.44 e-10 7.03 e-11
+1 .1 9.92 e-10 4,58 e-12 2.11 e-14
.01 1.04 e-10 4.40 e-14 1.87 e-17
.001 1.03 e-11 1.00 e-14 9.69 e-18
Table 1

The last column E(u,)=-E(u)
extrapolation.
u=0 , and in an e-range for

slowdown for

w0 as

e +0.

The convergence rates for

Vogelius and BabuSka (31], we expect E(uN)-E(u) ~ N‘u , see Figs. 1, 2, and 3.

R OAP OO IR SO0 OO A X0 w, T s M Ty o
R BN N t°s§q'x?Q"Q,’oft'of.'llezfg Vet ! ’bh"l‘;‘l_:'é.l A DA

Differences in energy dependent upon €

has an extra factor €

We notice the expected linear rates for

s, '.'-,‘((\

" XY (% S,

and u for B =1.

built in on account of the

u<0 , to some extent

u>0 , whereas there is an expected marked

exhibit the same type of behavior.
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The higher order (N) models become necessary not only for e not
small, but also when sufficient smoothness is absent (boundary- and interior
layers). Pertaining to the latter case, we also need to show extra considera-
tion when we want to resolve the (from a practical viewpoint very interesting)
"nonsmoothness" in the solution well. This would namely mean that we would
like to resolve Wi J large, well. But wJ's support lies in a (still)
narrow(er) band near the singularity (for j/¢ large enough) calling for

separate adaptively generated meshes for those ”j . For the linear case, see

Vogelius and Babubka [32]. See Figs. 4, 5, 6, 7, 8, and 9.
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B=1.77xI0
e

Fig. 4. Coefficient
function Wo for

e=1. (u€R).
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Fig. 5. Coefficient
function LD for

€= .01 and u = -1.

B=1.77x10
T v

Fig. 6. Coefficient
function LD for

€ = .01 and py = +1.
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Fig. 7. Coefficient
function w3 for

e=1(ueR.

Fig. 8. Coefficient

function w3 for
-1.

€ = .0t nd u-=

Fig. 9. Coefficient

function w3 for

e = ,01 nd u = +1. f
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We now describe the performance of a second approach applicable for

smooth, compatible B8 and us0 . 1In this case, it is possible to generate an

asymptotic series for the exact solution along the lines of Section 4. Taking

v

a sufficiently large number of terms in this series, it is thus feasible to
make direct error computations in the relevant norms. As an example, take
B = An2(1+3A2n2cosznx)sinnx, , where 1 1is a continuation parameter.

(This choice corresponds to taking C, = Asinmx, cof. Lemma 1 part (ii).)

Let the exact solution be given by (cf. Thm. 2 with subsequent remark)

u = 2 u(J) EZj ‘

S {

J=0 ]

L)

where each R
. 0

u(J) = % a (E)n2k , JEN. }

js2k ¥

k=0 It

Denote by u: the Mth partial sum in the above asymptotic series. Then

a a
| Iu-uNI - IUM‘UNI ‘ s Iu_uMI ’ !

where |u-uN| is sought for, |u:-uN| is computable, and, by inspection
_a 2M + 3/2 v
lumuyly,o = Ofe ) ¢
{
_a 2M + 5/U4 -
and ju uM|1’,4 = 0(e ) . ~
From Cor. 1 and Thm. 3 it follows that R
:
) 2N + 3/2
e lu-ugly,, = ote )
?aﬁ 2N ; 7/4 . %_ :
P and |u-uN|1'u = ole ) \

To investigate the asymptotic rate of convergence for e + 0 for N=0 and !
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respectively it will thus suffice to take M=1 and 2 (for the w1'2—norm) and

-‘,

M=0 (for the w1'u—norm).

The terms u(j) y J=0, ..., M, are generated via SMP (the symbolic

-
2 g 8. 3%,

manipulation program by Inference Corporation) using the recursive formulae in

the proof of Thm. 2 with the twist that u=0 . |u;—uN| is then computed via
Yy Simpson's rule over 51 points in [0, 1/2].
th On the next two figures (Figs. 10 and 11) are shown the errors in the two b

and

names W''2 and W''? for N=0. We see the optimal rate for |u-uN|1 2 B

observe a rate for |u-uN|1 y » which, not surprisingly, is superior to the
’ \

! rate of Thm. 3; in fact we get the rate achievable with 1 term (M=0) in the :
{]

asymptotic expansion.
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Fig 10. Error in W''2
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iy 10
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Our cﬁoice of ¢0' ¢1, and ¢2 was not ideal; it made some algebra
handier, out for larger N one sould need to find wj out of Thm. 1 and 2 to
maintain an easily invertible A(g) as well as ensure that wj + 0 fast as
e +0 .

Computations were also carried out for other types of functions F
(see(1)) exhibiting much the same behavior (although a less extensive analysis
was done, see [14]) and also for the linear case (F is the identity) where it
was possible to compare the CPU time spent with that of another solver: FEARS
(Finite Element Adaptive Research Solver), cf. [23], solving (U) directly, and
our method compared favorably (about 30 times faster; it should be noted,

though, that FEARS is a more general purpose solver).
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D) 4
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v

. L

2% . . :
1% We conclude that our approach yields an efficient numerical procedure for }
L) 4

4
solving (7) for € small, and smooth compatible boundary data as well as for

-39
Bt
P }: € not small or in the presence of some layer in the solution.

F- n

x}{ More precisely, we would like to emphasize the following conclusions:

" 1. There is for domains like ours and possibly archetype domains a large

,L k

1
)

\H?E savings in computational effort compared to standard nondimensional
B
oL reduction solvers. )
"t’.l i
w 2. The approach is a general one, which no doubt can be adapted to other
s
Wro
:é;‘ "stress-strain laws" as expressed through the function F in (1) as well
e
¥ t) B i
$§* as other types of boundary conditions. *
P
" 3. The selection of basis functions {wj} is robust in at least three ways.

- w\ = \
df a. Even though the selection was motivated by small values of the half- \
"v*"-

ﬁ;? thickness of the domain (e) , it works quite well for € not small
- (e =1 e.g.) without having to use an excessive number (N) of
o

A basis functions.

o

Q%.' b. Even in the presence of nonsmooth or noncompatible loads giving rise

" .-

. to layers in the solution, the method works well by picking these

“w
1)
ﬁf?‘ layers up in the coefficient functions {vj} to the basis func-

L0
as ! tions. These vj + 0 fast as j/e » =« and thus rough input data
Tl ’

- are taken care of at fixed e through increasing N at least near
: N J
> the layer. i

?fﬂ ¢. Through the parameter u we have introduced three asumptotic ranges
Py
s of loads: zero (u<0), finite (u=0), and infinite (u>0) 1limit load.
an y
EM) A .
) We showed that one should select the same basis functions in each of

"%

%S{ the three cases. Also computationally the method works equally well
oy in all three cases.
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s u
" <
0.'

\

N 2
§$ 4. The method lends itself to adaptivity or the "feed-back" approach in at N

) {]
’ least two ways. T
¥ ;;!
; a. At fixed N , the ODE solver used is actually already adaptive, see 2

» \
) l
} Babuska and Majer [21] and Majer [22]. he'

A .

N e

b. We would like to propose the following generalization of the method 0

Lt

3 0
?Q in this paper: 1let the choice of N be made locally in each subin-

f‘v ..-
& terval of some given mesh on the basis of local error estimators. We E,

: !
conjecture that the computational effort thus involved would be far -

v £

t b
é‘ less than that involved in "feed-back" or adaptive methods for i
5 A
K) +:
:g standard solvers since the dimension of the problem has been reduced 'Y
v, Ud)

by one. .
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) The Laboratory for Numerical analysis is an integral part of the !
:#q: Institute for Physical Science and Technology of the University of Maryland. i
: under the general administration of the Director, Institute for Physical
e Science and Technology. It has the following goals:
e
[\
b- o] To conduct research in the mathematical theory and computational
o implementation of numerical analysis and related topics, with emphasis
Lpf on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.
W
N
ﬁ;' o To help bridge gaps between computational directions in engineering, ]
kﬁh physics, etc., and those in the mathematical community.
D0
:qao o) To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
T agencies and industries in the State of Maryland and the Washington
AN Metropolitan area.
e o To assist with the education of numerical analysts, especially at the
=$ﬁ; postdoctoral level, in conjunction with the Interdisciplinary Applied
7 Mathematics Program and the programs of the Mathematics and Computer
ﬁ?' Science Departments. This includes active collaboration with govern--
{i%v ment agencies such as the National Bureau of Standards.
t v ']
:q; (o} To be an international center of study and research for foreign
??. students in numerical mathematics who are supported by foreign govern-
2 WY
ments or exchange agencies (Fulbright, etc.)
A
:\* Further information may be obtained from Professor I. Babuska, Chairman,
31\ Laboratory for Numerical Analysis, Institute for Physical Science and
" Technology, University of Maryland, College Park, Maryland 20742.
K
R

éshé

[
%

a w a A A AEER S K8

.

-

S enases

o AR A A T IR TR AL A Tt S




ety -opuuipe Y

e 3 3

- e

I X o e &
: ! o ' ety ] n‘t-l‘!""':"‘
e et OO WK

b3

Ay Ay O S OOCX By <€ 3O T e e it
B Sy D A () oy o 3 LAY & W0 2,0 0 () i
e AR WG TR ,:::\ r‘a':;:'f‘,_;'..d:‘,t." WA, .:'6.1' ".&"

ah



